Enter the Filastruder…

So, my birthday has been and gone for another year. Knee-deep in my various PhD research projects, my parents asked me what I would like for a present this year to cheer me up in these stressful times. Imagine their faces when I told them that I would love a kit to build my own plastic filament extruder – probably not quite what they had in mind!

I first read about the Filastruder on Kickstarter about a year ago, before I even owned a 3D printer, and thought it looked really intriguing if a little dangerous. Kickstarter is a great way of finding out about brand new things happening in the 3D printing community, but even though I have been known to back the odd project or two, and so far have not been too unlucky (if you don’t count the month-long delays – Kickstarter is definitely for the VERY patient), most things presented there should be taken with a pinch of salt. Even vastly successful projects like the Form1 often benefit from a period of beta testing, and if your priority is reliability rather than ‘being first’ it often pays to wait a year or two for the technology to get more established and for kinks to be ironed out.

As I have started to experiment a lot more with my printer recently, two things have come to my attention. Firstly, even though PLA is not terribly expensive to buy, the cost soon adds up as I found myself going through filament at a scary rate in the first few months, especially printing out vital components for my research. Secondly, the amount of waste filament also builds up relatively quickly, either from support material or failed prints, which even despite careful planning can and do happen. So, enter the Filastruder. A relatively simple contraption, it is a build-it-yourself plastic filament extruder sold in kit form by the original Kickstarter developers in the US. Since its Kickstarter days, the kit has built up a solid following of DIY filament makers, with some, such as avid blogger Grayson Galisky,  documenting in great detail their filament making experiments on the Solidoodle 3D Printing Community. Of course, since the Kickstarter campaign other filament extruders such as the Filabot and more recently the Protocycler have come to the market – and I am definitely keeping an eye out for the latter. For a UK based option, the Strooder looks promising – compared to the earlier kits those newer machines are definitely heading away from the DIY aesthetic towards a more consumer-friendly look. But for the moment, the Filastruder is the most economical option actually available on the market (the Protocycler and Strooder are both still in their pre-sales phases with release dates estimated for late 2015/early 2016). I have also opted for the spooling kit, as I have run into tangles with loose filament in the past, and the spooler makes the whole assembly much neater altogether.

Making virgin filament is relatively straightforward – buy PLA or ABS pellets or powder in bulk, add a carefully calculated amount of ‘masterbatch’ colourant to the pellets in the hopper of the extruder, mix and start extruding! The pellets need to be completely dessicated to get a great batch of filament, so baking them in an oven for a few hours will really improve quality levels (and of course storing them correctly afterwards). The masterbatch colourant is either sold with the pellets (Colourfabb do this) or you can devise your own methods to make it up – as far as I can tell from the forums almost anything goes, including the addition of powdered metals, wood etc to make exotic filaments. The possibilities that await!!! And it is a lot cheaper than buying ready-made filament. Depending on where you get the raw materials, you could save between 50%-80%.

However, another major appeal for a lot of people will be recycling their failed prints into freshly extruded brand new filament. And this is unfortunately a lot more complicated. The main hurdle to this is really getting your failed prints and waste filament to become tiny granules again – to work in the Filastruder, they need to be less than 5mm in diameter. Plastic can be a really awkward material to work with, and anyone who has ever tried to polish acrylic will know that using powertools of any kind will lead to rapid melting of the material. So apparently will putting PLA in a food processor to chop it up. Industrial plastic granulators are not only prohibitively expensive, but also incredibly bulky – unless you have a massive garage or outbuilding and get really lucky on ebay or a used industrial equipment auction, this will not be an option for you. The second option is using a special plastic shredder. Filabot last year announced the development of their own mini shredder, the Filabot Reclaimer, which looked absolutely lethal in their original promo video and has since been revised to be operated with a hand crank. Within the EU, there is FilaMaker, with their hand cranked mini shredders which look amazingly robust but are expensively handmade to order. These are probably the only viable options for 3D printing enthusiasts at this point – the Protocycler promises to feature its own built-in mini shredder, which would be a massive boon, but who knows if it is still around in a year? If you live in a city with a large industrial base, you might be able to find someone who is willing to let you granulate your waste PLA/ABS. But failing that, it’s really a question I have no answer for as of yet.

Anyway, I will write updates about my new toy as and when it arrives…

 

3D Printing Event at Napier University

Last Thursday I attended the 3D printing event held at the Merchiston Campus of Napier University in Edinburgh and organised by the Scottish Plastics and Rubber Association. The speaker was Ralph McNeill, founder of the 3D Print Works based in East Kilbride, a retailer of 3D printers and consumables and manufacturers of their own brand of filament, Elefilament PLA.  Ralph had brought an array of 3D printers to the event for demonstration purposes, and it was quite interesting to see some of models I had only been reading about online in the flesh, particularly a RepRap Rostock they had built themselves. While the talk was interesting, it catered to an audience completely unfamiliar with 3D printing, and a lot of it was just a reiteration of familiar facts for me. However, towards the end things became more interesting, when Ralph passed around samples and a prototype of a large scale direct drive extruder printhead they had been developing in their workshops.

Ralph giving his presentation - note the RepRap Rostock on the far right.
Ralph giving his presentation – note the RepRap Rostock on the far right.
The first generation, scaled up, FFF direct drive extruder developed by 3D
The first generation, scaled up, FFF direct drive extruder under development by 3D Print Works
A sample print of Ralph's first generation large Printhead
A sample print of Ralph’s first generation large Printhead

Sample 2Now that FDM, or more precisely, FFF (Fused Filament Fabrication) is increasingly moving into the consumer market, thoughts are turning to how to scale this technology to make bigger (read: more immediately useful) things. While everybody loves their ‘Marvin’ keyrings and PLA Iphone cases, these are consumer products of a non-essential nature. Wouldn’t it be amazing if we could print tables or chairs with a giant 3D printer, or even whole housing estates as has recently been touted in China? Of the two obvious points of development that are being tackled in relation to FFF – quality of materials used and scale – the latter just has a more monumental, immediately impressive and immensely profitable ring to it. Imagine ramshackle shanty towns replaced by clean, cheap, 3D-printed housing! Imagine constructing structures that were impossible to even imagine a few decades ago in weeks rather than months. Free 3D printed furniture for all!

For anyone who has engaged with the ideas of Le Corbusier and his Urban Utopia, the rhetoric behind these ideas sounds awfully familiar. And the flaws become immediately apparent. While it is wonderful to imagine a world in which we all live in beautifully designed, open-plan housing developments featuring huge communal spaces and walkways in the sky (and anyone who knows me knows that I would love to do nothing more), these lofty ideals always get corrupted by the desire to either save or make money. While a future in which you custom design your own house complete with furniture and then take residence a few short weeks later when it has been beautifully printed by the contractors is immensely appealing, I fear that this approach will more likely lead to aesthetic abominations driven by a desire to cut costs and a race to the bottom. As of yet, scaling up the process of FFF comes with its own, very physical, realities – when increasing the nozzle size, you end up with thicker layers that tend not to blend together so easily.

Scaling resolution to achieve a desirable finish will be a huge issue – one the Chinese appear to have solved by encasing the 3D printed shells in layers of plasterboard in a very traditional fashion. But then, the question arises, what’s the point of 3D printing a house in the first place?

My 3D Hub is online – Geotronic Collective

When I got my Ultimaker, a little card fell out of the package, advertising a website for 3D printing enthusiasts called 3D Hubs. Here, individuals can list their 3D printers and take orders to print out parts for others in their city. The customer uploads their model through the website, and the hub in return for a reasonable fee prints the model within a specified time frame. I think this is a brilliant idea, especially as it can often take weeks to get something printed from one of the main printing bureaus. As a student or hobbyist, sometimes all you want is a quick prototype for visualising what your model would look like in real life, working to impossible seeming deadlines.

So, I decided to set up my own Hub – Geotronic Collective – and I am pleased to say so far my experience has been very positive. I have just finished my first two orders, and hopefully made two customers very happy. It has been an interesting experience for me too, printing two things that are so very different from my own work, each pushing the limits of what the UMO+ can achieve in terms of print quality and especially fine detail. Here is a print of a Fantasy Creature I did for digital artist Agneta Miskiv:

Printed with 0.1mm layer height in Faberdashery Storm Grey PLA
Printed with 0.1mm layer height in Faberdashery Storm Grey PLA

Initially I was worried about the very fine detail features of this print snapping off, especially the fingers and spikes on the back of the head. Because of the complexity of the model, I decided against using Cura to generate the support structures, and instead used open-source software Meshmixer, which is particularly good at creating custom supports. This is one thing that has been bothering me about Cura – not being able to edit support structures at the slicing stage, and instead having to rely on the software to get it right. In Meshmixer, there are a lot of adjustable parameters as well as custom profiles, then the software suggests a network of supports that can also be amended by the user as they see fit. A perfect combination between automation and control. There is a great tutorial on how to use Meshmixer on blog Extrudable Me, as unfortunately the documentation it comes with is not particularly helpful. I have found that sometimes the support suggested by the program can be a bit overkill, but the structures snap off very easily, often in one piece, which is a big advantage for delicate prints in particular. Hopefully more orders will come my way soon so I can continue my adventures in 3D printerland!

PLA – Faberdashery

PLA (or Polylactic Acid) is a great material to print with on the Ultimaker – in fact I would go as far as to say it is the recommended material to print with, especially if you’re just starting out. It has a lower melting point than ABS, and does in theory not need a heated bed to get good adhesion. It is ecologically sound and made from renewable resources such as corn starch or sugarcane. It comes in a rainbow of colours and some very cool speciality filaments (thermochromic, UV active, glow-in-the-dark and fluorescent to name but a few). It also does not smell as strongly as ABS when printing. You can even shred any failed prints and re-extrude them into beautiful fresh reels of filament if you happen to have a Filastruder.

As a downside, it is not as structurally strong as ABS or Nylon, so if you are making high impact engineering parts it might not be your best choice. Ditto any parts that need to withstand higher temperatures – the glass transition temperature (where it starts to go soft) for PLA is around the 70C mark, meaning if you were going to pour hot water into a receptacle made from PLA it would start to deform – not an ideal scenario. There is also the issue of long term material degradation – it has a limited shelf life, and in time parts printed with it will start to become brittle. I have not yet witnessed this effect personally, so it is not really a deterrent for me. PLA is also quite difficult, if not impossible, to print with an all-metal hotend, as clogs can form as a result of the higher operating temperature. The Ultimaker hotend is not all metal, so very well suited for PLA. Stringing and oozing are also more of an issue with PLA, due to its slightly ‘softer’ texture, but this can easily be countered by adjusting the retraction settings in your slicer software of choice, Cura in my case.

While my Ultimaker came with a reel of Ultimaker PLA, I had already ordered another brand of filament I had read a lot about on the forums. Faberdashery PLA filament is manufactured in the UK, so as green as it gets in terms of carbon footprint through long-distance shipping. It comes in an absolutely vast array of colours and finishes, and even better is sold by the meter with 5m being the minimum quantity you can order of any one colour. For someone like me, who makes very small shapes but wants to experiment with many different colours this is absolutely perfect. I initially ordered two of their sample packs, made up of 10m of 10 different colours, in both opaque and transparent. And what beautiful colours they contained! Here are just a few samples:

Faberdashery Filament in (from left to right): True Lagoon, Space Marine and Princely Purple.
Faberdashery Filament in (from left to right): True Lagoon, Space Marine and Princely Purple.

My aim is to eventually print a Hyperhive Cocoon in each colour I have. Unfortunately, thoughts of such a scientific methodology are easily interrupted by artistic exuberance, and things got the better of me when I started playing with changing the filament colour mid-print:

Faberdashery filament in (left to right and bottom to top): Dark Sapphire, Aurora, Orange Fizz, Punk Star Pink, Orange Fizz, True Lagoon, Dark Sapphire, Orange Fizz and Lemon Drop.
Faberdashery filament in (left to right and bottom to top): Dark Sapphire, Aurora, Orange Fizz, Punk Star Pink, Orange Fizz, True Lagoon, Dark Sapphire, Orange Fizz and Lemon Drop.

Faberdashery also do some very appealing metallics:

Faberdashery filament in (left to right): Space Marine and Mercury Red
Faberdashery filament in (left to right): Space Marine and Mercury Red

I can’t wait to try out all the other very appealing colours on their website!

 

Printing with Flexible Filament

Since getting my UMO+ up and running I have been building up to trying out flexible filaments. I was so excited about printing flexible structures for my research that even before getting the printer I had ordered several spools of filament from different sources – without really checking whether it would be compatible with the printer! I thought as long as it was the right diameter (between 2.85mm and 3mm) it would surely work.

WRONG!

I cannot emphasise enough that it is really important to understand the limitations of the different types of 3D printers out there. The Ultimaker is a Bowden-type printer – the filament is pushed into the hotend through a 70-80cm long plastic bowden tube by a material feeder mounted to the back of the printer. In other words, there is a distance of about 80cm between the hotend and the feeder. For printing materials such as PLA and ABS this method works well – the filament is stiff and the force of pushing it translates reasonably rapidly, although I have read somewhere that problems with stringing and oozing on more intricate structures are more likely to occur because of a slight delay with retraction. For flexible filament however, the Bowden-type is probably the least suitable type of printer. The filament itself is already quite flexible, and the feeder squishing it forward through the tube causes a slight delay, meaning a lot of people experience underextraction or – even worse – terrible jams. Oh, and forget about retraction on intricate structures! The way forward here is to adjust the flow rate and printing/travel speed – you want to keep the material coming out of the nozzle as a nice steady ooze and then prevent stringing as much as possible by making the nozzle whizz over the print. There is a great flexible filament comparison thread on the Ultimaker forum, which was my starting point before embarking on my first tests.

Anyway, the first flexible filament I road-tested on my printer was the Ultimaker PLA Flexible-White filament that came as part of my original order. I figured that as an ‘official’ filament by Ultimaker it should cause less potential problems than others. It is quite a bit stiffer than the Recreus FilaFlex I tested afterwards, and this means that retraction settings actually work. Some people on the forum recommended putting some oil on the filament prior to printing, but I really really didn’t want to have to take apart my printer again to clean off residue, so just loaded the filament, ramped up the temperature a bit to 230C on my usual settings and hoped for the best. This is the result:

The Hyperhive Cocoon in Ultimaker PLA-Flexible White, printed at 230C
The Hyperhive Cocoon in Ultimaker PLA Flexible-White, printed at 230C

I am really pleased with the quality of this print – if anything stringing is even less of an issue with the flexible PLA than with normal PLA, making for a cleaner print and less tidying up afterwards. However, I was a bit disappointed at first about the flexibility of the shape – having expected something akin to silicone, this felt more like a very stiff rubber gasket. I looked up the shore hardness of the material and at A 92 it is at the harder end of the spectrum.

So, fired up by my initial success, I decided to try the second filament I had ordered – Recreus FilaFlex, in both black and purple. At a shore hardness of A 84, the filament itself felt a lot softer immediately, and was a bit difficult to thread through the Bowden tube and material feeder. There are very detailed printing instructions on the website (including the disclaimer that this filament is not suitable for Bowden-type printers!) and Recreus even sell their own hotend optimised for this type of filament. There appears to be a specifically formulated Bowden FilaFlex in the pipeline, but here I was with two rolls and a sense of reckless abandon. I considered the oil again but decided against it for above reasons. However, after reading various posts on the forums I decided to turn off retraction, and instead ramp up the flow rate to 150%. This was the result:

The Hyperhive Cocoon in FilaFlex Black, printed at 230C and 150% flow rate
The Hyperhive Cocoon in FilaFlex Black, printed at 230C and 150% flow rate

The image above shows the cocoon after I had removed the worst stringing, but the result was not bad at all, especially considering the very pleasing squishiness of the material. In terms of feel, this is definitely a lot more like what I was expecting, but there are clearly still issues with oozing and stringing that would need to be addressed. For comparison, here are some purple FilaFlex shapes I photographed prior to cleaning

FilaFlex Purple
FilaFlex Purple

The middle shape was printed with the retraction turned on – a complete disaster both in terms of stringing and underextrusion. The shape on the right displays the best characteristics, which I achieved by turning up the printing speed to 150 and reducing the flow rate to 130%. These figures still need some fine-tuning, but I was pleased to achieve any type of acceptable results with the FilaFLex at all.

There are still a lot of other flexible filaments to try out there, and these first results are very promising. For my purpose, the Ultimaker Flexible PLA is probably more suitable, but the FilaFlex might be interesting for some more experimental work.

Exotic Filament: FormFutura

Since getting my Ultimaker up and running, I have been avidly researching the most wild and wonderful types of filament to print with. There have been a lot of exciting developments in the unusual FDM (Fused Deposition Modelling) filaments sector recently, and it seems more filaments are getting announced every day on Kickstarter. I am starting this series of posts of some of the ones I am most excited about at the moment, although this list may change in time!

FormFutura Filaments

FormFutura, led by filament whizz Kai Parthy (read all about him in this interview) is responsible for some of the most exciting filaments on the market at the moment. Parthy started out by developing LayWood, a filament to imitate the feel and appearance of wood and LayBrick, developed with mainly architects in mind to create prints with a stone-like appearance and feel. LayBrick is so far the only FormFutura filament on my shelf. It is a mixture of PLA and chalk powder, and prints at a temperature between 165C and 220C, although variations in either direction are probably possible. It is quite heavy and somewhat brittle – I managed to snap the coil twice while inserting it through the bowden tube. This is one of my Hyperhive Cocoons printed in LayBrick:

My first print in Laybrick, the Hyperhive Cocoon at 190C

I love the chalky texture of the surface, and how it makes the cocoon look like a calcified fossil. Check out this extended printing guide on fellow blog Extrudable Me! This material will definitely be used for my work in the future – it is very akin to the texture and feel of the z-corp ceramic material, the qualities of which I’ve always adored.

The only downside is nozzle wear – the UMO’s brass nozzle is no match for the fine ceramic particles, which means over time the nozzle will be ground down and lose definition. This is the case for a lot of exotic filaments and is just something that I might have to accept by keeping a spare nozzle in reserve. Kai Parthy has just announced MoldLay, a filament developed for the lost wax casting process, which I am sure jewellery designers around the world are as excited about as I am! FormFutura also brought to the market porous and felty filaments under the umbrella name PoroLay, which I am dying to try out next for their flexible characteristics. Watch this space!

Building the Ultimaker…

So, after deciding to go with the kit version of the Ultimaker Original +, the fun started at the beginning of December with the arrival of a pleasingly heavy box on my doorstep. At this point I would like to say that I absolutely love online shopping – the postman is to my mind a much improved version of Santa, delivering goodies to your doorstep all year round :).

Unboxing time!
Unboxing time!

Inside the box awaited three layers of components, with the laser cut plywood frame pieces at the very bottom. Getting these to my house unscathed had been my biggest worry, but luckily everything was well wrapped and nothing was damaged in transit.

Lots of...stuff.
Lots of…stuff.

But hold on! No packing list. I had literally no idea what anything was (only a few of the plastic bags were labelled) and so went into a mild state of panic. Luckily for the first step of the assembly process no instructions were needed – lightly sanding and painting the plywood parts. I had been to the DIY store earlier and decided on a colour scheme of satin blue for the main body and fluorescent pink for the moving parts. Mixing the paints with water to thin them down and adding custom pigment was something I had read about on various Ultimaker blogs, and it worked an absolute treat, leaving a lovely translucent matte finish.

Painting and sanding all the little parts took forever...
Painting and sanding all the little parts took forever…

This step took a lot longer than I thought, especially as I wanted to preserve the beautiful dark laser-cut edge on all the pieces. After I had painted all the sating blue structural parts, I started assembling the main frame.

The main frame, assembled and in situ
The main frame, assembled and in situ…

My studio is starting to get a little crammed with me adding more and more gadgets over the years, so I had to start expanding upwards by modifying a huge ikea shelf with a pull out platform. It’s the perfect size for my Ultimaker, and the shelves above hold my collection of various filaments. The assembly process itself took about seven days in total, and there were various bumps in the road as the parts were not fully labelled (particularly the multiple bags of screws) and such operations rarely go completely smoothly. But by the end of December, as 2015 was dawning, my Ultimaker was fully pimped and ready to go…and here it is in all its glory, my ‘girly’ Ultimaker Original + as one of my (male) friends called it – with mood lighting!

Ultimaker04