Chasing Titans – Upgrading the UMO+ to direct drive

After nearly five years of fun-tastic printing and extremely reliable service, I could feel that the time had come to upgrade the extruder of my trusty Ultimaker Original Plus. The extruder on this machine was always the one part that I was not 100% convinced about – after first assembling the kit in 2013, I had some trouble in getting the large nut holding the main gear to stay in place, with the result that once or twice the whole thing fell apart during a long print. I also always detested its location at the back of the machine, the clattering, tortured, noisy retractions, and the fact that I would frequently struggle to insert filament because it got caught on the rim of the bowden tube connector. However, after initial teething problems, I had made my peace with it – the nut stayed on, I got better at guessing the proper angle for inserting filament, and the printer was reliably producing very good quality prints, despite my sometimes punishing retraction settings.

However, this autumn I began to notice a different type of problem to emerge. I had experimented extensively with relatively abrasive metal filaments this summer, and as a result the delrin wheel pushing the filament into the extruder had become worn in places. While ordinary PLA and ABS were still extruding relatively reliably, printing flexible filament became nearly impossible. A bowden setup is not the best for this type of filament anyway, and so I began thinking about upgrading the extruder assembly to a direct drive setup. I had heard good things about the E3D Titan Aero as an upgrade for Ultimaker printers (the UMO+ has the same electronics board as the UM2), but I was not quite ready to change the hotend and fan assembly as well. Besides, my current hotend is still performing brilliantly, and as it is the UMO design is fully compatible with the exchangeable nozzles sold by E3D, should I wish to change the diameter I am extruding with at any point. If I am ever going to make that switch, it will be to a 3 or 5 colour mixing Diamond Hotend – but at this point my thinking is that I should really build a new printer to experiment with that setup.

Instead, I looked at just mounting the E3D Titan extruder directly on top of the printhead. There are a few interesting designs for doing this on Thingiverse, but none are for the UMO+ and its slightly chunkier printhead. I ended up remixing Nakwada’s UM2 design, by adding a chunkier baseplate with slots for the original wooden parts of the hotend and a hole for the cables to pass through. You can find the stl file of my modified design here, which I ended up printing in fluorescent blue ABS. Two problems I encountered were the printed part being slightly warped, and some of the holes being a bit snug, but neither mattered for the final assembly. I reassembled the extruder and hotend around it, taking care to insert the two long screws underneath the motor and extruder before screwing everything in place. The trickiest step was probably gauging the right length for and connecting the piece of bowden tube – I ended up also ‘funneling’ the bit going into the extruder a little, to facilitate filament insertion. When ordering the Titan make sure you order the mirrored version, as this will not interfere with your endstops on the UMO+, and you will only lose a minimal amount of build volume.  I also took the decision to order the matching pancake stepper motor at the same time to keep the weight of the assembly down. This needed to be re-wired with a JST ph4 terminal in order to fit into the UM main board. After scrutinising the schematic of the motor for ages, I eventually figured out that the colours of the cables matched the original extruder motor’s and paired them in the AABB (blue/red – black/green) configuration required, which so far has worked perfectly. I cannot overemphasize how useful it is to learn all about electrical crimping – see my tutorial on this to get started with it.

With everything back together I checked the E-steps setting on my machine. They were already at the recommended value, although I am not totally sure why. My former stepper motor had a stepping ratio of 1.8 (but was also geared) whereas the little pancake runs at 0.9. At 837 steps/mm, I am getting great results, so I’m not complaining, but I think I need to look into this a bit more to really understand. Thomas Sanladerer has made a great tutorial about this that might enlighten me a bit. Another setting that had to be adjusted can be found in Cura. Because of the much reduced filament path, retraction settings of between 0.5 and 2mm are the recommendation, versus my 3.3mm setting before the switch. I am getting very clean prints at around the 1mm mark, and will hopefully be able to reduce this even more as I become more familiar with the extruder – fewer retractions mean a cooler motor! I also modified my end gcode to not reverse the filament as much after finishing a print – 1mm should be enough to alleviate the pressure. Reversing it by the default 5mm got me into serious trouble as the still-molten filament was pulled right to the top of the bowden adaptor and solidified in a tapered lump, causing a blockage that meant I had to disassemble the whole extruder!

A few issues with the Titan I have run into so far were mostly related to the dreaded clicking/missing steps scenario discussed by many other users in the E3D forum. I am not quite ready to do the rather drastic modification suggested by one user, and for the moment reassembling the extruder really carefully to make sure the gears mesh absolutely perfectly and tightly seems to have done the trick. I am on my 3rd print currently without any problems, but am slightly worried about some of the ‘budget’ filament I own, as it is often 3mm rather than 2,85mm, and even the top notch Faberdashery filament I love to use (and is very precisely specced) seems like a tight fit. After printing the current batch of Christmas decorations, I am yearning to finally try some flexible filament and hopefully see amazingly clean results.

So what are my final thoughts on the Titan modification? It is too early for me to say whether I will love it or loathe it. My old extruder was definitely ready to be replaced, but I need to do some more testing before delivering a definitive verdict. I want to try as many different types of filament and really put the new boy through his paces.I think dealing with clogs could be a bit of a nightmare, but then I haven’t really had many of those over the years – maybe 2-3 per  year. It is clear that some of my processes will have to be modified, such as cleaning out filament from the hotend, and changing filament during a print. I will also have to revisit my spool holder – it might make more sense to have a mounted reel holder now to reduce stress on the filament.

Modifying the printer wasn’t as gruesome as I imagined, and so far everything is working well. I was more than a little surprised to see that the teflon connector in the hotend still looked like new – I had my spare one to hand, ready to replace it. I have been very careful in using my printer over the years, particularly taking care to not run it too hot, and it has clearly paid of.

I hope you enjoyed this account of my experiences  and would love to hear your thought on things you are planning to modify!

Gallery now online!

Welcome to my brand new Gallery section, added to bring this blog up to date. So far there are two galleries – one containing images of my jewellery collections, the other to showcase my photography projects. Right now it is still under development, so watch this space as I add more content. Enjoy!

Rise like the Phoenix…

It has been exactly one year since my last post on this Blog, and a lot has happened in the meantime. The good news first:  I handed in my PhD at the University of Dundee earlier this month. Writing up my research over the last year has been a great experience, but now I feel I have come to the end of a long marathon.

The bad news: there are many posts I half-started and never actually published on the blog, relating to events and things I have seen over the last year. I will be pushing them out one by one now that I have a bit more time, and hope that some of you are still interested to read about not-so-current events and ongoings in the world of Interactive Craft.

To jump-start this blog a little bit after my self-enforced hiatus, I have finally succumbed and joined twitter. This will hopefully be an easier way to keep the blog right up to the minute when I don’t have the time to write longer posts, and give you a chance to engage more directly. So if you want to comment, just use my twitter handle @FutureJewels to send me a message!

I have also given the theme a bit of an overhaul, and added image galleries of my work here, updated on a more or less constant basis. Feel free to visit my Jewellery portfolio website as well, but it is here I intend to publish my latest creations. I have also decided to finally show some of my Macro Photography, which has provided the visual inspiration for much of my work. I hope you enjoy the facelift and continue to read my rambling posts.

Hinterland

Last night I was fortunate to be able to go to the Hinterland event at the derelict St.Peter’s seminary in Cardross. As some of you know, my love and fascination with Brutalist architecture goes back a long time, and my years of living at the Barbican centre in London will forever be enshrined in my memory as perfect architectural bliss. The site of the abandoned St.Peter’s seminary has been on my architectural radar for a while, but I had always hesitated to make the trip there for fear of unexpectedly bumping into some of the vandals that have been steadily dismantling the site. I am not talking about some of the absolutely stunning graffiti that has happened there over the years, but rather the smashing of the fairly sizeable altar stone (how???) and other such random acts of destruction. So when the Hinterland event was announced as part of the opening event of the Festival of Architecture 2016, my tickets to go were booked immediately.

Arriving at the site by shuttle bus, we were handed illuminated walking sticks to navigate through the dense woodlands along a footpath that featured a rather spooky sound installation on some sections and led to the small back door of the sacristy. The outer wall of the sacristy immediately reminded me very strongly of Le Corbusier’s Chapelle Notre-Dame-du-Haut, with its incredible thickness and tiny square windows set deep into the wall. The highly regarded chapel was completed in 1955, a mere eleven years before the seminary opened in 1966. Le Corbusier was reportedly a significant influence on architects Gillespie, Kidd & Coia, and this is evident in many of the features of this beautiful Scottish Brutalist masterpiece, such as the long columnar walkways, the open layout of the main spaces and the tiny dimensions of the novice’s individual cells.

Following a sloped, spiral walkway into the main hall of the seminary to the broken altar, the light installation staged by NVA created a surreal and fantastical colourful landscape on the graffitied walls and pillars of the seminary. In what used to be the central area of the knave, an oversized ceremonial pendulum was suspended over a shallow pool of water and occasionally set in motion by two priest-like protagonists, spewing forth thick white smoke. This was accompanied by eerie abstract choral singing and a ritual of welding steel inside a cage situated on the far side of the pool, creating an incredible interplay of shadow and bright white light on the ceiling, columnar wall and surface of the water. Progressing through the seminary, it became obvious what a tranquil and meditative space it used to be, and this struck me most when coming out of the recreation block into a secluded inner courtyard. The seminary is much more compact in scale than I expected and from ground level a warren of complementary geometries opened up like a darkly lit multistorey labyrinth. We spent about two hours at the site itself, and even though photography was not permitted inside the building, I managed to take a few of the outside as seen from the garden, although many more beautiful professional images have been released online since the event opened last week, and there is also some video footage  by others on Youtube.

Hinterland7 Hinterland5

Hinterland3

Hinterland1

Arts organisation NVA have recently taken on the site, with an exceptional vision to turn it into a venue where experimental art and community engagement events can take place – head over to their website to watch the beautifully shot promotional video that explains their plans better than I could, and maybe make a small donation? Further funding of £4.2 million has just been announced and it now looks like all the pieces are in place to go ahead with the building plans and hopefully re-open in 2017/18. I was particularly pleased to hear that they want to remake the large lantern skylight that was lost over the years, and which was a particularly stunning feature of the original building. For a glimpse of what the seminary was like when initially built and used by the Catholic church to train priests, have a look at this fascinating footage from the 1972 architectural documentary “Space and Light” by Murray Grigor. In 2009, Grigor also released the shot-by-shot re-make companion piece “Space and Light Revisited”, visually contrasting the current decaying state of the seminary with its pristine original condition. I am already very excited about seeing the restored building in the near future, hopefully to return and take some more competent photographs.

Making a PCB – the Jeweller’s way! (Part 1)

Sometimes, having trained as a jeweller is surprisingly useful when it comes to working with electronics. After finally having got my head round the way in which ICs are programmed and used on circuit boards with this handy programmer, I decided that the easiest way to incorporate small-scale electronic components in my jewellery was to make a customised PCB (Printed Circuit Board) – it was time to put the theory into action! Not only would creating custom PCBs save me a whole lot of cash (the components are a fraction of the price of a finished circuit board), but it would also allow me to fully control the shape and size of my PCBs.

The first step in this endeavour was creating the circuit design files. Now, there are a number of ways to do this, and which method you use depends largely on your skill base, the complexity of the circuit you want to design and what method you will be using to produce the final board. There are a lot of great freeware packages available online, the most popular probably being the EAGLE PCB software offered by cadsoft. However, I could not get the freeware version to install on my system, and so decided to look for alternatives in the meantime. Fritzing offers a PCB generator as part of its package, but I wanted to use a software that would let me customise tracks and components easily, while offering a library of ‘pre-fab’ parts to play with until I am more familiar with the pin spacing of components and minimum track widths, so after a false start with the very basic FreePCB, in the end I chose the DesignSpark PCB package (v.7.1). Equipped with a full library of parts, as well as a searchable online database of parts offered by UK electronics distributor RS components, this program was really easy to use and before long I had laid down my first PCB design. For the experts out there it is also possible to make PCB layouts in any vector-based graphics software (such as Adobe Illustrator), but of course you will have to be 100% certain of your design as there are no automatic checks or set design rules in a graphics application. DesignSpark has customisable rules and warns you if components are spaced too closely together or if there are missed connections. It is by no means perfect, and I ended up tweaking some of my PCB designs in Illustrator after finalising the layout in DesignSpark to account for crooked or awkward tracks, as well as adding my logos to the boards.

Once I was happy with my designs, I tried to figure out which would be the best way to get them onto the copper covered particle board. After initially considering using the iModela at our MakeSpace, I decided that maybe the old ways are the best and ordered the chemicals required for photoetching. From my time as an undergraduate at ECA I still had some PNP blue resist lying around the studio, and even though some people swear by the slightly more accurate UV-exposure method for transferring your artwork to the resist, if you have a laser printer at home the PNP is easily the most hassle-free solution. After transferring your design to the dull side of the film with a laser printer or photocopier, the film is ironed onto the thoroughly cleaned and de-greased surface of your PCB board. When ironing on the resist, don’t put too much pressure on the iron, as it can spread the ink and make your tracks bleed into each other. There are some great tutorials online about this process, although I would recommend the use of a glassfibre brush (available from enamelling suppliers) for degreasing your board rather than acetone, as it is more reliable and there’s no need for chemicals.

Once you have transferred your artwork to the board, gently peel off the PNP film, and touch up any imperfections or gaps with a black indelible marker pen. In order to preserve the rest of your board, mask off any areas that are not to be etched with brown parcel tape. You should end up with something like this:

First PCB01

The shiny exposed copper areas are going to be etched away, leaving only the black track marks behind. Depending on which chemical you use, prepare as stated on the packaging and fill a small plastic tub with just enough solution to cover your particle board. Gently slide in your board, and agitate the solution roughly every two minutes either with a feather or by gently tipping the tub from side to side. Eventually, all the copper will have been eaten away by the acid, at which point the board needs to be removed quickly from the acid bath with plastic tweezers and rinsed thoroughly under running water. Don’t ever leave your board unattended in the acid, as the acid can undercut the tracks if left too long. Some people have also successfully used the sponge etching method, but I prefer the traditional way as you have a lot less direct contact with the chemicals. After the board has been thoroughly rinsed, you can remove the parcel tape and the resist with acetone.The end result will look similar to this:

First PCB03See how to finish the job in part II…

The Arts Foundation Jewellery Awards 2016

Happy New Year to all of you Smart Jewellers out there! With 2016 only a few days old, I suddenly realised how terribly I am lagging behind with my blogging and there are a few long posts about my research activities still in the works – hopefully to be found on here soon!

But first I wanted to share some excellent news I received last November – I have been shortlisted for the prestigious Arts Foundation Jewellery Award 2016. With the awards ceremony at the end of the month fast approaching, I thought this was the perfect time to remind everyone to cross their fingers on my behalf on the 28th of January! You can read all about the awards and the other nominees in the Jewellery category in this recent Press Release or on the Arts Foundation website, where you can also find all the other categories and past award holders- for all you material enthusiasts out there the Material Innovation Category will be particularly exciting!

Arts Foundation STDI am absolutely delighted to be on the shortlist with so many talented and forward thinking practitioners and I am looking forward already to meet all of them in person on the 28th.

Make Shift Do 2015 – Smart Materials Workshop bookings now live!

Exciting things have been going on in my studio, but for the moment I am too swamped with the academic year starting and resuming my teaching duties to blog about them here. However, over the next four weeks or so I am hosting two fabulous events perfect for adventurous makers, the first of which is a Smart Materials workshop. Organised again by my friend and fellow PhD candidate Jo Bletcher as part of the 2015 Make Shift Do conference at the Duncan of Jordanstone College of Art and Design in Dundee on the 23rd of October, this will be a slightly larger affair than last year and cover a more varied range of materials. There is a nominal participation fee to cover material costs, and a range of other workshops running in the afternoon, from 3D printing to creative electronics. The makings of an excellent day out for digital makers!

All workshops are bookable through this Eventbrite Listing – See you on the 23rd!

On a roll…

Two days ago I finally finished assembling my Filastruder and Filawinder. There were a few last minute tweaks that became necessary once I had decided on my final setup and positioning of the assembly in my studio, such as sourcing a longer cable for the Filawinder sensor and making a stand for the Filastruder to sit on. I had initially planned to go for a fully wall-mounted vertical setup, but the Filastruder is a reasonably heavy piece of kit, and as I don’t quite trust the strength of the walls in my studio, I ended up going with this 45 degree angle tabletop assembly instead, designed to fit the enclosure I am using. Going vertical should always be considered as the superior option, because of the way gravity aids the extrusion process, but you have to work with what you’ve got. Setting up the Filastruder on my workbench and the Filawinder on another workbench opposite gives me enough room between the two machines to drop the filament in a generous loop once extrusion starts, with the Filawinder sensor placed on the floor between them. The sensor cable that was included in the kit was not long enough for this to work (and as 3mm filament needs a slightly longer run before going into the Filawinder, I am guessing it would not be for most people extruding this diameter), but I sourced a 15ft version and the appropriate connectors, which should hopefully see me through all future eventualities.

With everything in place it was finally time to turn on the ‘struder and do the initial purge! Excitement mixed with apprehension as I turned on the heater for the first time and  watched the numbers on the display creep up, eventually reaching the target temperature of 171C. At this point it is really important to give the Filastruder enough time to heat up thoroughly – anyone who has ever used an enamelling kiln will know this as ‘soaking’. While the thermocouple might be displaying the target temperature, this is only measured on a tiny part of the assembly, and it can take anything from an additional 10-30 minutes for that temperature to reach other areas of the machine. Turning on the motor before everything has been thoroughly heated through can lead to disastrous results – in extreme cases even barrel deformation – as the plastic is not liquid enough to let the screw turn freely, putting strain on the motor and other mechanical components. After about 30 minutes I finally felt comfortable enough to turn on the motor. The PLA started shooting out of the barrel almost immediately, initially as very liquid blobs of hot plastic and eventually as filament. During the initial purge, this will be filled with metal particles and other debris, and it could take up to 8 hours to clean out the barrel completely. This gives you however plenty of time to adjust the temperature settings to suit your material, and really fine-tune the diameter of your filament. In my case, it transpired that 171C was far too high for the PLA I am using (Natureworks Ingeo 4043D) and eventually I settled on 155C which gave me a relatively stable output of 2.7-2.8mm filament.

Next: getting the Filawinder to work. 3mm diameter filament poses a further challenge for the winder, as it is a lot stiffer when it comes out of extrusion and thus harder to wind. My initial attempts to get it to work failed miserably, mainly because I had followed the assembly instructions to the letter and cut my length of PTFE tubing in half, making it too short to work in my setup. This resulted in increased strain on the spool which meant the motor was not strong enough to pull the filament and kept getting stuck. Luckily I still had the other bit of the tubing, and a bit of kapton tape later a full length PTFE tube means that the Filawinder is now working like a charm. This is really important for getting a consistent diameter – even moving the sensor during winding can mess up the fragile dynamics that exist between the extruder and winder and be the difference between producing excellent filament and something ready for recycling. After six hours my initial purge was complete and my first spool of filament all wound up:

FirstPLA01Of course, its contents will now be going in the bin as the contaminants mean the material is unsuitable for putting through a 3D printer or re-extrusion, but I’m still proud I made it this far and now have a working setup to extrude my own custom filament. More to follow soon…

M3D – my tiny blue Mini Micro has arrived…

After backing the M3D Micro campaign on Kickstarter last year – one of the most successful ones ever to be launched with nearly 12.000 backers pledging around 3.4 million dollars – it has been a long wait and an even longer journey through 3D printing wonderland for me, most of which has been documented in this blog. When I decided to back the Micro, I did so mostly because of my very tight budget at the time – the $299 price tag was very attractive, even with an additional £120 factored in for shipping and import duties. Then the long wait began (the success of the campaign meant mounting delays and revised delivery schedules) and eventually the pressure of getting my PhD finished motivated me into diving into my savings and getting the UMO+ kit (which also took nearly 3 months to arrive from ordering – 3D printing is apparently for the patient). I have learnt a lot since then, and clocked up many hours reading forums, adjusting Cura settings and tweaking models to get that perfect print out of my UM.

So when I finally got the email to say that my Micro was ready to be shipped out in June, I was excited to scale up my operations with the addition of the tiny blue cube, but also wondering if I still really needed it now that I was churning out top quality prints in all sorts of materials with my UM. But then I saw the Mini Micro!!! I think I had not initially realised quite how tiny it would be, so when the box arrived (including some extra rolls of filament) I was quite taken aback both by its size and weight. This little printer has to put a new meaning to the phrase ‘portable’ – with a slick little body injection-moulded out of thermoplastic (available in blue, green, orange, black and silver I think), and the potential for an internal spool and filament path (I prefer to mount mine externally on the back to see what’s going on) this is the perfect printer to take on holiday, your mum’s house, college, your nearest Makerspace…anywhere really. While I know of a few people who claim the UM to be very portable, and who do take it along to events, I would never consider that as an option – even the UP! felt heavy to me when I lugged it around Dundee for an event, and that is a lot smaller than an UM. The Micro however, would be very easy to take anywhere – it weighs next to nothing and there are very few external parts to contend with. Box it up, stick it in your handbag, off you go! It is also very easy to move around different rooms of the house – as I type this, it is sitting next to me on the arm of my sofa, printing away happily and reasonably quietly. It looks and feels almost like a toy – a very advanced toy, but a toy nevertheless.

Now for the more technical aspects of the Micro. Its design reminds me a lot of the Rapman – a Z axis in each corner, with a central double y axis supporting the printhead and sliding along two x axes. All axes are direct drive, with the Y axes being rotated by a long metal rod connected to a motor and a double belt system (the belts look tiny and somewhat vulnerable). The platform is static and unheated, which will make printing ABS practically impossible if my experiences with the UM are anything to go by. Printing PLA seems to work like a charm, and I have had no problems with platform adhesion so far. The extruder is of the direct drive variety, and I can hear the small fan inside the enclosure whirring away busily when it’s printing – there are no external fans like on the UM. The extruder has an automatic filament drive, with a shielded bowden tube connecting to the internal spool holder (located underneath the printbed), and a tiny hole for feeding in filament externally. The Micro takes 1.75mm filament – handy for me, as it will now allow me to use any filament in my setup, and I love that they have enabled their customers to use ANY filament rather than just the one sold by them. The trend of companies and re-sellers trying to push the proprietary filament model is worrying and needs to be opposed vehemently by consumers. Altogether, I really like the way the printer looks and its handy size, but of course the proof will be in the pudding and the prints it manages to turn out.

So far on that front my experiences have been mixed. When I first got the UM, trying to print my Cocoon shape was a nightmare, figuring out the settings, raft, temperature, z-hop, retraction and speed. However, slowly but surely I was starting to get great results, with the help from many people on the UM forum and by trial and error. The Micro is far more consumer oriented than the UM – it comes with its own proprietary software, which uses the Cura engine to slice the model and then a spooler to translate the Gcode to the printer. It is meant to be truly Plug-and-Play – upload your model into the software, drop it on the virtual platform, choose from a few quality and infill settings, tell the printer what filament you’re using (the M3D filament even has a ‘cheat code’ with preset optimum temperatures) and press print. There is absolutely nothing wrong with this, especially if you manage to find a setting that gets good results with your model. And I think the average user, who wants to download and print something from Thingiverse or Youmagine, will find that the Micro produces very decent prints. But I am already getting the feeling (and the jury’s still out – so far I have only printed two models on the Micro) that this printer would be capable of so much more in terms of speed and quality if there was an option to tweak the setting in Cura and then send the file directly to the printer, or if the proprietary software had many more adjustment options. I really hope that in the future this will be possible – the original Kickstarter campaign promised open-source software compatibility, and for me this is an important aspect of optimising print quality. Another tiny bugbear is the fact that is needs to be plugged into my computer at all times – quite annoying on longer prints, and not as handy as having an SD card to save models on, although I think opinions are generally divided on this matter.

Altogether I am pleased with my pledge – for a product to arrive on my doorstep at all is quite good, considering the many failed Kickstarter campaigns out there. I can see this printer producing good results with simple models as it is, and coming in really handy for taking to workshops because of its size. Whether it will eventually be able to match the fantastic quality of my UM remains to be seen – watch this space! Would I back it again, knowing everything I know now and with the market having moved on considerably in the last year to give us affordable, high-quality printers like the Printrbot Play? Who knows – we’ll see how capable and handy it is in the next few months, and whether its great portability outweighs other drawbacks. For now I am really enjoying my tiny blue cube…

 

xCoAx 2015 Glasgow

A few weeks ago I gave a paper at the XcoaX 2015 conference held at the Centre for Contemporary Arts in Glasgow and this year organised and hosted by the University of the West of Scotland. When I initially saw the call for papers in January, I was intrigued by the eclectic mix of themes, encompassing computation, communication, aesthetics, human computer interaction, coding, digital installation art and the ominous ‘X’. When my paper on the aesthetics of creating stimulus-responsive jewellery was accepted, I was really excited to be a part of this diverse conference and could barely wait for the end of June to roll around.

This year the conference consisted of four different events, including an evening of digital performances and the eponymous ‘Algorave’ held at the GSA, in addition to the more traditional paper presentations and an exhibition of works. After a delightful evening reception on the Wednesday, the paper presentations were held over two consecutive days and consisted of five sessions, loosely linked by themes and content. I thoroughly enjoyed all the presentations, and was particularly intrigued by the amount of research focusing on sound related installations. This was a field I had been unaware of before XcoaX, and the idea of ‘live coding’ performances, where programmers write freestyle lines of code to create sound building blocks which in turn are assembled as electronic music is absolutely fascinating. Other highlights included Hanna Schraffenberger and Edwin van der Heide’s Sonically Tangible Objects which provided the audience with a brief glimpse into a future augmented reality, whereas Nicole Koltik’s short paper on philosophies of the artificial and Sofia Romulado’s analysis of videogames as an artform struck a particular chord with me.

On Friday evening we were treated to a string of performances, and Thor Magnusson and Pete Furniss gave a wonderful demonstration of how live coding and traditional instruments can be used to create a completely immersive ‘wall of sound’ experience in their piece Fermata. Another highlight was provided by digital artist Jung In Jung, who had brought dancers Dane Lukic and Stefanos Dimoulas to perform in their interactive sound and dance collaboration Thermospheric Station.

Altogether it was an amazing experience, and one I am hoping to repeat next year when the conference will be held in Bergamot. Better come up with some fresh material by then! I will finish this brief report with images from the exhibition. While all of the works on show were absolutely fascinating (and I finally got to try some real VR goggles!), two in particular struck a chord – Andreas Zingerle and Linda Kronman’s 5-channel interactive audio installation called ‘Let’s talk business’, a humorous installation exploring online scam narratives and Raul Pinto, Paul Atkinson, Joaquim Vieira and Miguel Carvalhais’ growth objects, which use mushroom spawn to create objects based on biological generative systems. See you next year in Bergamot!

Spam 1
Andreas Zingerle and Linda Kronman: ‘Let’s Talk Business’ Installation with Spam can telephones
Mushrooms 1
Pinto, Atkinson, Vieira and Calvahais: ‘Growth Objects – Biological Generative Systems’
Mushroom 2
Detail of a ‘Growth Object’