Barney…and Björk

As one of my all-time favourite artists I would definitely have to rank Matthew Barney. I was fortunate to see his Cremaster Cycle when it was touring the world in 2002, after he had finished the final part “Cremaster 3”. The exhibition actually opened in my German home town of Cologne, at the Museum Ludwig, which is where I saw it the summer before I started art college. I made my now-husband sit through most of all the films (we left half-way through Part 1, which was screened last, after nearly 6 1/2 hours in the cinema), and the experience has stayed with me since then. For me, being able to remember something you saw nearly 13 years ago in vivid detail is a sign of great art. My favourite part by far was Part 3, which was eventually partially released on DVD (unfortunately only 30 minutes though, which a) makes very little sense unless you have seen the rest of the cycle and b) doesn’t nearly scratch the surface of its visually complex narrative). I would love to see the whole cycle again in its entirety, but screenings are so rare and I am so bad at finding out about things early that there is practically no chance of that happening other than by some crazy stroke of luck. In the Cremaster Cycle, Barney seems to have achieved what many artists strive for – to realise a vision so compelling, visceral, complete and utterly original that it could not be anyone else’s.

Gooo....so much goooo
Gooo….so much goooo…

Of course, I was not surprised when it later emerged that Barney was in a relationship with Icelandic performance artist extraordinaire Björk. After seeing the Cremaster Cycle, it just made complete sense to me that two people with such unique creative vision would share a deep connection. Björk herself is high on my list of “People I would like to make a massive semi-unwearable piece of jewellery for”, and I admire her ability to completely re-invent herself in always unexpected ways for each of her releases. She really pushes the boundaries of what constitutes music, and the themes of her 2011 album Biophilia album particularly strike a chord with me. The MOMA New York is staging a massive retrospective of her work right now, which I am sure despite the mixed reviews is worth seeing at any rate, even if only for the amazing costumes. I love the outfit Björk is wearing for her latest album Vulnicura, as usual pushing the boundaries of wearability and blurring body adornment and fashion:

bjork-vulnicura-2015-press-billboard-650Vulnicura of course is a break-up album, conceived as a response to her recent split from Barney. Maybe that in itself was also an inevitability in the grand scheme of things.

My 3D Hub is online – Geotronic Collective

When I got my Ultimaker, a little card fell out of the package, advertising a website for 3D printing enthusiasts called 3D Hubs. Here, individuals can list their 3D printers and take orders to print out parts for others in their city. The customer uploads their model through the website, and the hub in return for a reasonable fee prints the model within a specified time frame. I think this is a brilliant idea, especially as it can often take weeks to get something printed from one of the main printing bureaus. As a student or hobbyist, sometimes all you want is a quick prototype for visualising what your model would look like in real life, working to impossible seeming deadlines.

So, I decided to set up my own Hub – Geotronic Collective – and I am pleased to say so far my experience has been very positive. I have just finished my first two orders, and hopefully made two customers very happy. It has been an interesting experience for me too, printing two things that are so very different from my own work, each pushing the limits of what the UMO+ can achieve in terms of print quality and especially fine detail. Here is a print of a Fantasy Creature I did for digital artist Agneta Miskiv:

Printed with 0.1mm layer height in Faberdashery Storm Grey PLA
Printed with 0.1mm layer height in Faberdashery Storm Grey PLA

Initially I was worried about the very fine detail features of this print snapping off, especially the fingers and spikes on the back of the head. Because of the complexity of the model, I decided against using Cura to generate the support structures, and instead used open-source software Meshmixer, which is particularly good at creating custom supports. This is one thing that has been bothering me about Cura – not being able to edit support structures at the slicing stage, and instead having to rely on the software to get it right. In Meshmixer, there are a lot of adjustable parameters as well as custom profiles, then the software suggests a network of supports that can also be amended by the user as they see fit. A perfect combination between automation and control. There is a great tutorial on how to use Meshmixer on blog Extrudable Me, as unfortunately the documentation it comes with is not particularly helpful. I have found that sometimes the support suggested by the program can be a bit overkill, but the structures snap off very easily, often in one piece, which is a big advantage for delicate prints in particular. Hopefully more orders will come my way soon so I can continue my adventures in 3D printerland!

Tools, Tools, Tools… part 1

In my quest to make this site somewhat of a resource for budding digital jewellery designers, this post will be about one of my favourite topics: tools. As a jeweller, I am absolutely addicted to nice tools – give me a lovely vintage hammer, an unusually shaped pair of pliers or a set of precision Swiss needlefiles and any birthday/Christmas/anniversary is a great one. Of course, when I started working with electronics this meant that I immediately had an excuse to stock up on a brand new supply of great, sometimes weird looking tools. Here is some advice about what to get that I wish I’d had along the way…

1) Soldering Station – not the right place to save money!

It’s the most essential tool you’re going to get for your electronics work. Scrimping on your soldering iron is just not a good idea – you’re going to do countless joints and maybe even attempt a spot of SMD. You might initially get away with using a cheap, single temperature soldering iron, but as your skills grow so will your expectations of what you might want to be able to adjust on your iron. There are many different models out there and I don’t think I have found my perfect one just yet – but after owning a simple non-adjustable plug-in one (Conrad), a cheapish analogue temperature-adjustable one (Maplin – no numbers were given on the temperature dial, just the categories of low/medium/hot) and a digitally temperature controlled one (Maplin again) I have only started to achieve satisfactory results with the latter. It’s great to be able to adjust the temperature down to within a degree, and it heats up super quickly. It did not break the bank either – it will be a while before I outgrow this one. In electronics, Japanese tools are very highly regarded (in jewellery making too, by the way), and I have recently read somewhere that the Hakko brand is the one to look for if you want to go deluxe, but you’ll have to pay for it (or take a chance on an ebay listing, usually sent from China). On my next trip to Japan (if it ever happens…) I will be flying out light and returning with a suitcase full of lovely components and tools by Hakko. Until then I just discovered that my soldering iron can take the very reasonably priced Hakko tips, and that will have to do. The only other thing I might invest in is a battery powered ultra portable soldering iron, to take to workshops and teaching sessions. Oh, and don’t forget to get one of these brass wire sponge soldering tip cleaners to go with your new iron – the little wet sponge you get included for this purpose is a nightmare and cools your iron down every time you wipe it.

2) Wire Stripper/Crimping Tool

Stripping the plastic casing off a piece wire can be a pain…until you discover this little gadget. Again, some really nifty Japanese ones (the Engineer brand is great) are available on the web and they can be very handy as you can crimp terminals, strip wire and cut screws to length all using a single tool. If you’re going to do a lot of crimping I would recommend getting this tool instead/as well, as the handy ratcheting mechanism will save you from developing repetitive strain injury in the long term and deliver just the right amount of pressure, although it does take some practice to get the hang of it. Working on a small scale means trying to get as little wire mess as possible, and crimping your own terminals is the best way to achieve this.There is an excellent and very detailed tutorial on YouTube explaining some of the different tools and crimping techniques – practice makes perfect! The hardest part must be figuring out and getting all the crimps and terminals you need to do the job at hand…

3) A Breadboard…or three

You want to start prototyping and you want to start now! Well, a breadboard is just what you’ll need. Designed to enable you to fit your components together in test circuits, the choice of breadboards is dazzling.  You can get tiny ones for on-the-go projects in all colours of the rainbow, small ones in a fancy tin, giant ones that hook together to make a mega-breadboard and the standard half-size version you see in all the electronics tutorials. I have been very happy with my breadboard for three years now – it even has some terminals to hook up a bench top power supply, which I initially thought would be mega useful, but have yet to try out! I would definitely recommend getting more than one, as otherwise you’ll be constantly dismantling ‘in-progress’ projects to make room for a new idea. Using a few tiny ones in clusters can also be very useful to keep component groups separated. To start with, one that has labelled rows could be a boon, as it is very easy to get confused what row you’re working in at any one time.

I have put together a suppliers list in the Vault section that I will keep adding to as I find more interesting sources for stuff!

Body Embellishment Exhibition

I am already getting very excited about the Body Embellishment Exhibition opening next month at the Mint Museum in Charlotte, North Carolina, where my Earconch will be on public display for the first time since my degree show at the Edinburgh College of Art in 2006. It will run from the 11th of April to the 6th of September – so plenty of time to marvel at the wonderful work on display. Fellow jewellers on display include greats such as Nora Fok, whose wonderful structural wefts with Nylon I have always adored. There is also a series of talks and events throughout the duration of the show.

I am so honoured to be a part of this exciting exhibition –  here is a little feature in the style section of the Charlotte Observer which includes an image of my Earconch. If only I could afford to jet to the opening next month!

Earconch Web LARGE

Tiny little Arduinos…

So, in my quest to create fabulous wearable futures for jewellery lovers, I have come to a point where I have to bite the bullet and get deeply involved in the microelectronics side of my research. The arrival of the Ultimaker has pushed my material experimentation to a whole new level, and the moment has finally come to start creating first assemblies of both materials and electronic components for my symbiotic jewellery objects.

Since I started my research, a lot has happened in the world of wearable computing – particularly in terms of miniaturisation, but also to some extent functionality. There seems to be more of an appetite now for developers to release ever-smaller processors and exciting sensors to the hacker community, and more and more people are starting to use them. For someone like me who is just starting out with electronics (and even after extensive reading and research around the subject for the last three years I would still consider myself a beginner) this is a blessing, as a larger user base means more community support in the shape of blogs, forums and user guides. The Adafruit website has a humungous database of learning projects, starting from scratch with the very basics and ranging all the way to the sublime. Another great resource for getting started is the Sparkfun website, which has a great learning section as well as a user forum. If you live in the States either one of these are very handy for you – just choose a project and order the components to go with it directly from the supplier. In the UK, you have to go through third party retailers, but between them they usually have the full range of components available (including some more from other brands).

In my latest efforts to intergrate electronics into jewellery, I was delighted to find that since I last looked in 2013, not one but five new Arduino-based microcontroller boards had been developed in an appropriate size range for wearables. Brilliant News!…Now which one to choose??? For a previous project, I had dipped my toes into using the Arduino Pro Mini 328 5V and 3.3V boards, which are a great little option if you need a lot of output pins and a reset button. I still have two of those in the workshop, and I am sure they will come to be used in the near future for one of my larger, more elaborate pieces. But they are rectangular in shape, and a bit awkward to use within the more rounded, organic shapes I have been making of late. Also they are quite possibly processing overkill for what I am trying to (and capable of) do in terms of programming. They have a similar functionality to the much larger Arduino Uno, which is definitely a lot more than I need at this point, although I like using one for running prototype programs and test the wired connections.

An immediately appealing option for using in my projects were the Adafruit Flora and Gemma, with the latter being smaller, with fewer pins and no serial monitor capability. They are both circular, which is a much easier shape for me to incorporate than the usual rectangular geometries of PCBs. I ordered the Gemma (the Flora is probably a little bigger than I would like for my use), and it is a nearly perfect size for most of my jewellery projects, with the handy JST and USB mini jacks meaning programming and powering the controller is a doddle. However, I am as of yet struggling with the programming – the first example sketch  I tried to load onto it would not work (and we’re not talking Blink here btw), because of the lack of a serial monitor. I have not given up on Gemma, but I might have to postpone until my programming knowledge catches up. Another small controller recently introduced by Adafruit is the Trinket, which I have not yet had a chance to consider, but which is supposed to have the processing power of an Arduino Uno and looks really really neat and tiny…

…Which brings us to the last two new arrivals to the wearable controller market of late, the TinyDuino and TinyLily. Born out of a Kickstarter campaign by developers TinyCircuits,  these are whole systems of tiny microcontrollers and accessories. Essentially built around the hardware of the Arduino Pro Mini and LilyPad series, the TinyDuino is square in shape and comes with an array of development boards and accessories, while the TinyLily is round and merely the size of my thumbnail but still has 8 sewable ports (4 analogue/4 digital) and two power outlets to play with – plenty for my requirements. The input voltage on these two controllers is variable between 2.7V and 5.5V, so allows for use with a large range of sensors and devices. Here is a size comparison of the Flora, Gemma and TinyLily for reference:

Size Comparison TinyLilyWhile the TinyLily is slightly more awkward to program and connect, it has a definite size advantage over the other two that for making digital jewellery could make all the difference. It is slightly more expensive than the Gemma and about half the price of the Flora, but that seems about right in terms of functionality and processing power. Just for comparison, here are the Trinket, Trinket Pro and Arduino Pro Mini Boards:

Size Comparison Trinket

Sizewise they are perfectly suitable for wearables, especially if you need the advanced functionality and processing power – with Adafruit Neopixels for instance. Their rectangular shape makes them a bit awkward for me, but I could see how they would work in the right situation. Now, on to tackling the programming…

PLA – Faberdashery

PLA (or Polylactic Acid) is a great material to print with on the Ultimaker – in fact I would go as far as to say it is the recommended material to print with, especially if you’re just starting out. It has a lower melting point than ABS, and does in theory not need a heated bed to get good adhesion. It is ecologically sound and made from renewable resources such as corn starch or sugarcane. It comes in a rainbow of colours and some very cool speciality filaments (thermochromic, UV active, glow-in-the-dark and fluorescent to name but a few). It also does not smell as strongly as ABS when printing. You can even shred any failed prints and re-extrude them into beautiful fresh reels of filament if you happen to have a Filastruder.

As a downside, it is not as structurally strong as ABS or Nylon, so if you are making high impact engineering parts it might not be your best choice. Ditto any parts that need to withstand higher temperatures – the glass transition temperature (where it starts to go soft) for PLA is around the 70C mark, meaning if you were going to pour hot water into a receptacle made from PLA it would start to deform – not an ideal scenario. There is also the issue of long term material degradation – it has a limited shelf life, and in time parts printed with it will start to become brittle. I have not yet witnessed this effect personally, so it is not really a deterrent for me. PLA is also quite difficult, if not impossible, to print with an all-metal hotend, as clogs can form as a result of the higher operating temperature. The Ultimaker hotend is not all metal, so very well suited for PLA. Stringing and oozing are also more of an issue with PLA, due to its slightly ‘softer’ texture, but this can easily be countered by adjusting the retraction settings in your slicer software of choice, Cura in my case.

While my Ultimaker came with a reel of Ultimaker PLA, I had already ordered another brand of filament I had read a lot about on the forums. Faberdashery PLA filament is manufactured in the UK, so as green as it gets in terms of carbon footprint through long-distance shipping. It comes in an absolutely vast array of colours and finishes, and even better is sold by the meter with 5m being the minimum quantity you can order of any one colour. For someone like me, who makes very small shapes but wants to experiment with many different colours this is absolutely perfect. I initially ordered two of their sample packs, made up of 10m of 10 different colours, in both opaque and transparent. And what beautiful colours they contained! Here are just a few samples:

Faberdashery Filament in (from left to right): True Lagoon, Space Marine and Princely Purple.
Faberdashery Filament in (from left to right): True Lagoon, Space Marine and Princely Purple.

My aim is to eventually print a Hyperhive Cocoon in each colour I have. Unfortunately, thoughts of such a scientific methodology are easily interrupted by artistic exuberance, and things got the better of me when I started playing with changing the filament colour mid-print:

Faberdashery filament in (left to right and bottom to top): Dark Sapphire, Aurora, Orange Fizz, Punk Star Pink, Orange Fizz, True Lagoon, Dark Sapphire, Orange Fizz and Lemon Drop.
Faberdashery filament in (left to right and bottom to top): Dark Sapphire, Aurora, Orange Fizz, Punk Star Pink, Orange Fizz, True Lagoon, Dark Sapphire, Orange Fizz and Lemon Drop.

Faberdashery also do some very appealing metallics:

Faberdashery filament in (left to right): Space Marine and Mercury Red
Faberdashery filament in (left to right): Space Marine and Mercury Red

I can’t wait to try out all the other very appealing colours on their website!

 

Printing with Flexible Filament

Since getting my UMO+ up and running I have been building up to trying out flexible filaments. I was so excited about printing flexible structures for my research that even before getting the printer I had ordered several spools of filament from different sources – without really checking whether it would be compatible with the printer! I thought as long as it was the right diameter (between 2.85mm and 3mm) it would surely work.

WRONG!

I cannot emphasise enough that it is really important to understand the limitations of the different types of 3D printers out there. The Ultimaker is a Bowden-type printer – the filament is pushed into the hotend through a 70-80cm long plastic bowden tube by a material feeder mounted to the back of the printer. In other words, there is a distance of about 80cm between the hotend and the feeder. For printing materials such as PLA and ABS this method works well – the filament is stiff and the force of pushing it translates reasonably rapidly, although I have read somewhere that problems with stringing and oozing on more intricate structures are more likely to occur because of a slight delay with retraction. For flexible filament however, the Bowden-type is probably the least suitable type of printer. The filament itself is already quite flexible, and the feeder squishing it forward through the tube causes a slight delay, meaning a lot of people experience underextraction or – even worse – terrible jams. Oh, and forget about retraction on intricate structures! The way forward here is to adjust the flow rate and printing/travel speed – you want to keep the material coming out of the nozzle as a nice steady ooze and then prevent stringing as much as possible by making the nozzle whizz over the print. There is a great flexible filament comparison thread on the Ultimaker forum, which was my starting point before embarking on my first tests.

Anyway, the first flexible filament I road-tested on my printer was the Ultimaker PLA Flexible-White filament that came as part of my original order. I figured that as an ‘official’ filament by Ultimaker it should cause less potential problems than others. It is quite a bit stiffer than the Recreus FilaFlex I tested afterwards, and this means that retraction settings actually work. Some people on the forum recommended putting some oil on the filament prior to printing, but I really really didn’t want to have to take apart my printer again to clean off residue, so just loaded the filament, ramped up the temperature a bit to 230C on my usual settings and hoped for the best. This is the result:

The Hyperhive Cocoon in Ultimaker PLA-Flexible White, printed at 230C
The Hyperhive Cocoon in Ultimaker PLA Flexible-White, printed at 230C

I am really pleased with the quality of this print – if anything stringing is even less of an issue with the flexible PLA than with normal PLA, making for a cleaner print and less tidying up afterwards. However, I was a bit disappointed at first about the flexibility of the shape – having expected something akin to silicone, this felt more like a very stiff rubber gasket. I looked up the shore hardness of the material and at A 92 it is at the harder end of the spectrum.

So, fired up by my initial success, I decided to try the second filament I had ordered – Recreus FilaFlex, in both black and purple. At a shore hardness of A 84, the filament itself felt a lot softer immediately, and was a bit difficult to thread through the Bowden tube and material feeder. There are very detailed printing instructions on the website (including the disclaimer that this filament is not suitable for Bowden-type printers!) and Recreus even sell their own hotend optimised for this type of filament. There appears to be a specifically formulated Bowden FilaFlex in the pipeline, but here I was with two rolls and a sense of reckless abandon. I considered the oil again but decided against it for above reasons. However, after reading various posts on the forums I decided to turn off retraction, and instead ramp up the flow rate to 150%. This was the result:

The Hyperhive Cocoon in FilaFlex Black, printed at 230C and 150% flow rate
The Hyperhive Cocoon in FilaFlex Black, printed at 230C and 150% flow rate

The image above shows the cocoon after I had removed the worst stringing, but the result was not bad at all, especially considering the very pleasing squishiness of the material. In terms of feel, this is definitely a lot more like what I was expecting, but there are clearly still issues with oozing and stringing that would need to be addressed. For comparison, here are some purple FilaFlex shapes I photographed prior to cleaning

FilaFlex Purple
FilaFlex Purple

The middle shape was printed with the retraction turned on – a complete disaster both in terms of stringing and underextrusion. The shape on the right displays the best characteristics, which I achieved by turning up the printing speed to 150 and reducing the flow rate to 130%. These figures still need some fine-tuning, but I was pleased to achieve any type of acceptable results with the FilaFLex at all.

There are still a lot of other flexible filaments to try out there, and these first results are very promising. For my purpose, the Ultimaker Flexible PLA is probably more suitable, but the FilaFlex might be interesting for some more experimental work.